In this two-part series, we will take a deeper dive into several QI conceptual frameworks, or ways to approach QI projects. In our previous posts, we discussed preparation strategies for QI projects; but when it comes to implementing a change, how would a team go about choosing an approach? We will start with a discussion of the variable effectiveness of different change interventions, then we will delve into an overview of some common frameworks, and finally, we will apply our discussion to a case study in our next post.
Hierarchy of Effectiveness
In our last post, we discussed a QI project which aimed to decrease the time between ordering packed red cells (pRBCs) and administration in the ED by 30% over a 6 month period. Interventions to reach this goal can be categorized along a continuum of effective. The basic tenet of this hierarchy is that the more an intervention is reliant on individuals repeatedly performing a specific task in a consistent way, the less likely it is to achieve a consistent and sustainable change. In other words, it is only by changing the system itself that one can ensure reliable and effective improvements. This hierarchy of effectiveness is illustrated below.1
Keeping the different types of interventions in mind, the following are examples of each level from least to most effectiveness. These examples target different tasks along the pRBC order-to-administration pathway, however, different interventions could also be applied to the same part of the pathway.
Hierarchy Levels | Example |
Education and Training | Deliver a training PowerPoint at rounds reminding providers to properly tag lab samples |
Rules and policies | Change the protocol of who picks up the blood samples after labeling |
Reminders, Checklists, & Double Checks | Create a checklist beside the blood drawing areas |
Simplification and Standardization | Remove redundant steps in lab processing |
Automation & Computerization | Use printing labels |
Forcing Functions | Use an order form that only has two specified options for pRBC delivery |
Emergency department clinicians have many competing priorities in a complex environment with multiple stakeholders. Therefore, the approach most likely to achieve consistent and sustainable change is to introduce a forcing function as part of the workflow. When implementing system-level changes such as this, It would be important, however, to observe clinicians in the practice environment post-intervention to ensure they are not performing ‘workarounds’, or other self-initiated adaptations to avoid the forcing function.
Now let’s discuss a few of the many conceptual frameworks that are commonly used for QI projects. We will begin with an overview of Lean, Six Sigma, and the Model for Improvement.
Lean Methodology – ‘Eliminating waste’
Lean was adopted from a Japanese manufacturing philosophy that aims to diminish any form of waste, which is any action that does not add value to the product.2 A thorough evaluation of each step of the process is undertaken to identify inefficiencies. Two main considerations for decreasing inefficiencies are the standardization of the processes at hand and involvement of employees in the process development.3 An integral part of the process requires including the front-line staff to identify problems as they arise, and immediately addressing them. The overall approach includes: identifying value from specific stakeholder perspectives, understanding the value stream (what is value-added to the customer and what is a waste), eliminating that waste, as well as establishing flow.4
The first step is the ‘walk around’ – an observation of the actual process in detail (i.e. ‘going to the gemba’) – and working with a team to come up with solutions to reduce waste.5 You may notice that several of these steps are reminiscent of the general QI methodology that we discussed in previous posts such as process mapping, and stakeholder engagement. An example of Lean application in the ED is illustrated by Dickson and colleagues.2 Moreover, waste in healthcare can be categorized across seven domains that are illustrated below. A full description is provided by Bush.6
Waste Category | Description |
Waste overproduction | Producing unnecessary things such as several copies of forms that aren’t used |
Waste of time on hand | Waiting for the next step such as waiting for imaging that is ordered |
Waste in transportation | Transferring equipment or people such as placing triage very far from the registration desk |
Waste of processing | Unnecessary processes such as having produced a paper copy of an electronic document |
Waste of stock on hand (inventory) | Inventory waste such as excess medication placed in the ED that expires |
Waste of movement | Movement that is unnecessary such as leaving a patient’s room multiple times to get equipment |
Waste of making defective products | Waste related to increased costs, repairs, or satisfaction effects such as using cheaper sutures that break during the procedure |
Six Sigma (DMAIC) Methodology – ‘Eliminate variation’
Six Sigma was invented by Motorola in 1980.7 In healthcare, it is a data-driven methodology to improve processes and reduce costs, improve quality, efficiency, and satisfaction.8 The benefits of Six Sigma are achieved through the utilization of a systematic approach such as the Define-Measure-Analyse-Improve-Control (DMAIC) approach:4
Figure: DMAIC Process – 6 Sigma. Adapted from Scoville et al.4
This approach aims to identify and remove the causes of errors or defects while minimizing variability in processes. It uses a set of statistical methods and trained individuals with different levels of experience (e.g., green belt, black belt) to lead the projects.4 Examples of projects include cycle time reduction, process flow improvement and medical-error reduction.7
Model for Improvement: [Plan-Do-Study-Act (PDSA) Methodology]
PDSA Cycles are the crux of the Model for Improvement’s iterative improvement cycles, which include the four following phases:
Plan: An appropriate intervention is selected and planned for, along with a hypothesis of what is likely to happen
Do: The intervention is carried out and measured
Study: The intervention measurements are studied and its implications for the intervention analyzed
Act: The intervention is modified based on the lessons learned and feedback collected, in order to start the next PDSA cycle.
A visual representation of it is seen below:9
Figure: PDSA Cycle. Adapted from Riley W.9
PDSA cycles include ongoing modifications or enhancements to the intervention(s) with each cycle by building on collected information.10 An important advantage of this method is its focus on small-scale projects, which start with low-resource requirements to test an intervention prior to a large-scale implementation if successful. It can also increase buy-in as staff notice that interventions are modified as needed. This approach can be incorporated as a type of continuous improvement methodology, or as a dynamic learning process that sustains a culture of improvement. As an example, Chartier et al. previously demonstrated how sequential PDSA cycles were used to iteratively learn, design and improve a new method of seeing patients in their ED.
Summary
Each clinical problem may be best solved by the application of one, or a combination, of these frameworks or tools. How does a change team go about choosing the change framework that will best apply to your ED? Stay tuned for our next post where we work through these approaches with more illustration and see how they may be applied to different problems.11
This post was copyedited by Paula Sneath
Click here for more articles in the HiQuiPs series!
**UPDATE (November 2020): The HiQuiPs Team is looking for your feedback! Please take 1 minute to answer these three questions – we appreciate the support!**