principles

- **spontaneous ventilation:**
 - venous return and preload are augmented, pressure gradient between LV and aorta

- **Pos. pressure ventilation issues:**
 - decreased venous return, dec. Cardiac Output, less pressure gradient LV --> aorta
 - exacerbates hypotension

- **invasive mechanical ventilation:**
 - **control variable**
 - Pressure controlled
 - set amount of pressure applied to lungs
 - set inspiratory time
 - Useful to prevent barotrauma or high resp. reserve
 - Asthma, COPD
 - salicylate overdose
 - unable to control volume
 - volume controlled
 - peak insp. pressures vary based on Tidal volume
 - Risky when poor resp. system compliance
 - Useful in volume restricted diseases:
 - ALI
 - ARDS
 - obesity
 - **dual control ventilation**
 - PRVC
 - **Ventilator mode:**
 - Continuous mechanical ventilation (CMV)
 - Assist/control - P or V control.
 - fixed breaths per min, assists fixed vol. breaths with pts triggering breathing.
 - deeply sedated or paralysed pts. ***standard ED setting****
 - Intermittent mech. vent. (IMV)
 - SIMV
 - patients with weak, intermittent breaths
 - preset breaths, promotes patient comfort, avoids hypervent.
 - Continuous spont. vent. (CSV) ****(all patient determined)****
 - PSV: awake interactive patients
 - CPAP- set PEEP
 - PEEP: is the maintenance of pos. airway press. AFTER the completion of passive exhalation
 - increases FRC, oxygenation, dec. intrapulm shunt
 - BiPAP- set IPAP and EPAP

non-invasive techniques

- NIPPV
○ CPAP: constant pos, pressuring during the resp. cycle
○ BiPAP: alternates between iPAP and ePAP (alveolar recruitment)

MANAGEMENT:

NIPPV vs. Invasive:
● NIPPV can obviate intubation in many "DNR" situations or for reversible conditions

<table>
<thead>
<tr>
<th>Ideal pt. popultn.</th>
<th>Contraindications</th>
<th>notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>NIPPV</td>
<td>• COPD</td>
<td>• decreased LOC</td>
</tr>
<tr>
<td></td>
<td>• cardiogenic pulm edema w. fatigue</td>
<td>• no resp. drive</td>
</tr>
<tr>
<td></td>
<td>• hypercapnic acidosis</td>
<td>• increased secretions</td>
</tr>
<tr>
<td></td>
<td>• ?asthma</td>
<td>• Actively vomiting patient/or about to vomit</td>
</tr>
<tr>
<td></td>
<td>• ?pneumonia</td>
<td>• hemodynamic instability</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• facial trauma/deformity</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• agitated or combative patient</td>
</tr>
<tr>
<td></td>
<td></td>
<td>leads to afterload reduction: causes elevations of intrathoracic pressure; decreases LV ejection pressure; decreases RV preload</td>
</tr>
</tbody>
</table>

approach to initial vent. settings:
● systematic questions to talk through:
1) could NIPPV help?
 ● CPAP:
 ○ IPAP at 10 cm H20
 ○ EPAP at 5 cm H20
 ○ increase each by 1 cm at a time.
 ○ max IPAP is 20 cm h20

2) Intubation needed?
 ● Mode: A/C
 ● tidal Vol: 6-8 ml/kg
 ● rate: 12-14 bpm
 ● pressure targets < 30 cm h20
 ● FiO2: @ 1.0, then titrated DOWN to maintain sp02 > 90%
 ● PEEP: at 5 cm h20

ongoing management:
● regular titration of settings based on blood gases
● **VBG’s good for pH and Pco2**
● PIP / peak airway pressures = the amount of airway pressure in the alveoli at end inspiration

● **Must also address analgesia and sedation!**
 ○ RASS score from -5 <= > +4; ideal emerg level is -2
 ○ Morphine - has active metabolites that accumulate in the system
Benzo's - when infused have tissue accumulating properties leading to prolonged delirium and sedation
 - boluses are much better if absolutely needed
Propofol - better given as an infusion: 0.1mg/kg/min
Dexmedetomidine - great drug for sedation and for ICU delirium
***Haldol - useful adjunct who are acutely agitated after large doses of other sedatives**
VAP prevention:
 - Suctioning
 - HOB >30 deg.
 - OG/NG to suction
 - Chlorhexidine mouthwashes

Complications of PPV:
 - Lung barotrauma and volutrauma
 - max end-inspiratory pressures at 30 cm H2O
 - risk of pneumothorax, pneumomediastinum
 - breath stacking in obstructive lung disease leading to hyperinflation
 - decrease resp rate and I:E ratio

Troubleshooting the ventilator:

 - first step: "Disconnect the Ventilator system and Bag with 100% 02"
 - Acute diagnoses not to miss:
 - physiologic things:
 - tension pneumothorax
 - acute PE
 - inadequate sedation
 - mechanical things:
 - dislodged tube or mucous plug
 - cuff leak or vent circuit problem

special clinical circumstances: any existing lung disease:
"treat them like BABY lungs"

<table>
<thead>
<tr>
<th>Disease</th>
<th>Acute exac. COPD</th>
<th>Status Asthmaticus</th>
<th>ALI / ARDS</th>
</tr>
</thead>
<tbody>
<tr>
<td>notes</td>
<td>minimize IPEEP:</td>
<td>similar to COPD</td>
<td>decreased tidal Vol.</td>
</tr>
<tr>
<td></td>
<td>- bronchodilators,</td>
<td>- low RR,</td>
<td>below 7 ml/kg</td>
</tr>
<tr>
<td></td>
<td>- steroids</td>
<td>- long Exp. times</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- long expiratory time,</td>
<td>- NO PEEP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- low RR</td>
<td>- low PEEP</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- low TV</td>
<td>- low tidal Vol.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- "permissive hypercapnia"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- I:E of 1:4</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- deep sedation!</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>